skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Worthy, Samantha J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantifying species’ niches across a clade reveals how environmental tolerances evolve, and offers insights into present and future distributions. We use herbarium specimens to explore climate niche evolution across 14 annual species of theStreptanthus(s.l.) clade (Brassicaceae), which originated in deserts and diversified into cooler, moister areas. To understand how climate niches evolved, we used historical climate records to estimate each species’ 1) classic annual climate niche, averaged over specimen collection sites; 2) growing season niche, from estimated specimen germination date to collection date, averaged across specimens (specimen-specific niche); and 3) standardized seasonal niche based on average growing seasons of all species (clade-seasonal niche). In addition to estimating how phenological variation maps onto climate niche evolution, we explored how spatial refugia shape the climate experienced by species by 1) analyzing how field soil texture changes relative to the climate space that species occupy and 2) comparing soil water holding capacity from each specimen locality to that of surrounding areas. Specimen-specific niches exhibited less clade-wide variation in climatic water deficit (CWD) than did annual or clade-seasonal niches, and specimen-specific temperature niches showed no phylogenetic signal, in contrast to annual and clade-seasonal temperature niches. Species occupying cooler regions tracked hotter and drier climates by growing later into the summer, and by inhabiting refugia on drought-prone soils. These results underscore how phenological shifts, spatial refugia, and germination timing shape “lived” climate. Despite occupying a large range of annual climates, we found these species are constrained in the conditions under which they thrive. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. Summary Herbarium specimens are widely distributed in space and time, thereby capturing diverse conditions. We reconstructed specimen ‘lived’ climate from knowledge of germination cues and collection dates for 14 annual species in theStreptanthus(s.l.) clade (Brassicaceae) to ask: which climate attributes best explain specimen phenological stage and estimated reproduction? Are climate effects on phenology and reproduction evolutionarily conserved?We used climate data geolocated to collection sites to reconstruct the climate experienced by specimens and to ask which aspects of climate best explain specimen reproductive traits. We mapped slopes of climate relationships with these traits on the phylogeny to explore evolutionary constraint and models of evolution.Precipitation amount and onset, more than temperature, best predicted specimen phenology, but weakly predicted reproduction. Earlier rainfall was associated with more phenological advancement, a relationship that showed phylogenetic signal. Few climate predictors explained specimen reproduction. Phenological compensation, interactions with other species, or challenges in estimating total reproduction from specimens may reduce the signal between climate and reproduction.We highlight the value of specimen‐tailored growing season estimates for reconstructing climate, incorporating evolutionary relationships in assessing responses to climate. We propose supplemental collection protocols to increase the utility of specimens for understanding climate impacts. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  3. Free, publicly-accessible full text available May 1, 2026
  4. ABSTRACT Lianas, climbing woody plants, influence the structure and function of tropical forests. Climbing traits have evolved multiple times, including ancestral groups such as gymnosperms and pteridophytes, but the genetic basis of the liana strategy is largely unknown. Here, we use a comparative transcriptomic approach for 47 tropical plant species, including ten lianas of diverse taxonomic origins, to identify genes that are consistently expressed or downregulated only in lianas. Our comparative analysis of full-length transcripts enabled the identification of a core interactomic network common to lianas. Sets of transcripts identified from our analysis reveal features related to functional traits pertinent to leaf economics spectrum in lianas, include upregulation of genes controlling epidermal cuticular properties, cell wall remodeling, carbon concentrating mechanism, cell cycle progression, DNA repair and a large suit of downregulated transcription factors and enzymes involved in ABA-mediated stress response as well as lignin and suberin synthesis. All together, these genes are known to be significant in shaping plant morphologies through responses such as gravitropism, phyllotaxy and shade avoidance. 
    more » « less